Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38585925

RESUMO

Repetitive head impacts (RHI) sustained from contact sports are the largest risk factor for chronic traumatic encephalopathy (CTE). Currently, CTE can only be diagnosed after death and the multicellular cascade of events that trigger initial hyperphosphorylated tau (p-tau) deposition remain unclear. Further, the symptoms endorsed by young individuals with early disease are not fully explained by the extent of p-tau deposition, severely hampering development of therapeutic interventions. Here, we show that RHI exposure associates with a multicellular response in young individuals (<51 years old) prior to the onset of CTE p-tau pathology that correlates with number of years of RHI exposure. Leveraging single nucleus RNA sequencing of tissue from 8 control, 9 RHI-exposed, and 11 low stage CTE individuals, we identify SPP1+ inflammatory microglia, angiogenic and inflamed endothelial cell profiles, reactive astrocytes, and altered synaptic gene expression in excitatory and inhibitory neurons in all individuals with exposure to RHI. Surprisingly, we also observe a significant loss of cortical sulcus layer 2/3 neurons in contact sport athletes compared to controls independent of p-tau pathology. These results provide robust evidence that multiple years of RHI exposure is sufficient to induce lasting cellular alterations that may underlie p-tau deposition and help explain the early clinical symptoms observed in young former contact sport athletes. Furthermore, these data identify specific cellular responses to repetitive head impacts that may direct future identification of diagnostic and therapeutic strategies for CTE.

2.
World J Pediatr Congenit Heart Surg ; : 21501351241232077, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646826

RESUMO

Objectives: We previously demonstrated cerebral mitochondrial dysfunction in neonatal swine immediately following a period of full-flow cardiopulmonary bypass (CPB). The extent to which this dysfunction persists in the postoperative period and its correlation with other markers of cerebral bioenergetic failure and injury is unknown. We utilized a neonatal swine model to investigate the early evolution of mitochondrial function and cerebral bioenergetic failure after CPB. Methods: Twenty piglets (mean weight 4.4 ± 0.5 kg) underwent 3 h of CPB at 34 °C via cervical cannulation and were followed for 8, 12, 18, or 24 h (n = 5 per group). Markers of brain tissue damage (glycerol) and bioenergetic dysfunction (lactate to pyruvate ratio) were continuously measured in cerebral microdialysate samples. Control animals (n = 3, mean weight 4.1 ± 1.2 kg) did not undergo cannulation or CPB. Brain tissue was extracted immediately after euthanasia to obtain ex-vivo cortical mitochondrial respiration and frequency of cortical microglial nodules (indicative of cerebral microinfarctions) via neuropathology. Results: Both the lactate to pyruvate ratio (P < .0001) and glycerol levels (P = .01) increased in cerebral microdialysate within 8 h after CPB. At 24 h post-CPB, cortical mitochondrial respiration was significantly decreased compared with controls (P = .046). The presence of microglial nodules increased throughout the study period (24 h) (P = .01, R2 = 0.9). Conclusion: CPB results in impaired cerebral bioenergetics that persist for at least 24 h. During this period of bioenergetic impairment, there may be increased susceptibility to secondary injury related to alterations in metabolic delivery or demand, such as hypoglycemia, seizures, and decreased cerebral blood flow.

3.
Acta Neuropathol Commun ; 11(1): 161, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803326

RESUMO

Astrocytic tau aggregates are seen in several primary and secondary tauopathies, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). In all of these diseases, astrocytic tau consists mostly of the longer (4R) tau isoform, even when adjacent neuronal aggregates consist of a mixture of 3- and 4R tau, as in CTE. Even the rare astrocytic tau aggregates seen in Pick's disease appear to contain both 3R and 4R tau. The reasons for this, and the mechanisms by which astrocytic tau aggregates form, remain unclear. We used a combination of RNA in situ hybridization and immunofluorescence in post-mortem human brain tissue, as well as tau uptake studies in human stem cell-derived astrocytes, to determine the origins of astrocytic tau in 4R tauopathies. We found no differences in tau mRNA expression between diseases or between tau positive and negative astrocytes within PSP. We then found that stem cell-derived astrocytes preferentially take up long isoform (4R) recombinant tau and that this uptake is impaired by induction of reactivity with inflammatory stimuli or nutritional stress. Astrocytes exposed to either 3R or 4R tau also showed downregulation of genes related to astrocyte differentiation. Our findings suggest that astrocytes preferentially take up neuronal 4R tau from the extracellular space, potentially explaining why 4R tau is the predominant isoform in astrocytic tau aggregates.


Assuntos
Encefalopatia Traumática Crônica , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Astrócitos/metabolismo , Tauopatias/patologia , Paralisia Supranuclear Progressiva/patologia , Encéfalo/patologia , Encefalopatia Traumática Crônica/patologia , Isoformas de Proteínas/metabolismo
4.
bioRxiv ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37790527

RESUMO

Activity-induced gene expression underlies synaptic plasticity and brain function. Here, using molecular sequencing techniques, we define activity-dependent transcriptomic and epigenomic changes at the tissue and single-cell level in the human brain following direct electrical stimulation of the anterior temporal lobe in patients undergoing neurosurgery. Genes related to transcriptional regulation and microglia-specific cytokine activity displayed the greatest induction pattern, revealing a precise molecular signature of neuronal activation in the human brain.

5.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546981

RESUMO

Astrocytic tau aggregates are seen in several primary and secondary tauopathies, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and chronic traumatic encephalopathy (CTE). In all cases, astrocytic tau consists exclusively of the longer (4R) tau isoform, even when adjacent neuronal aggregates consist of a mixture of 3- and 4R tau, as in CTE. The reasons for this and the mechanisms by which astrocytic tau aggregates form remain unclear. We used a combination of RNA in situ hybridization and immunofluorescence in post-mortem human brain tissue, as well as tau uptake studies in human stem cell-derived astrocytes, to determine the origins of astrocytic tau in 4R tauopathies. We found that astrocytes across tauopathies do not upregulate tau mRNA expression between diseases or between tau-positive and -negative astrocytes within PSP. We then found that stem cell-derived astrocytes preferentially take up long isoform (4R) labeled recombinant tau and that this uptake is impaired by induction of reactivity with inflammatory stimuli or nutritional stress. Astrocytes exposed to either 3R or 4R tau also showed downregulation of genes related to astrocyte differentiation. Our findings suggest that astrocytes preferentially take up neuronal 4R tau from the extracellular space, which potentially explains why astrocytic tau aggregates contain only 4R tau, and that tau uptake is impaired by decreased nutrient availability or neuroinflammation, both of which are common in the aging brain.

6.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398335

RESUMO

Social interaction is a core component of motivational behavior that is perturbed across multiple neuropsychiatric disorders, including alcohol use disorder (AUD). Positive social bonds are neuroprotective and enhance recovery from stress, so reduced social interaction in AUD may delay recovery and lead to alcohol relapse. We report that chronic intermittent ethanol (CIE) induces social avoidance in a sex-dependent manner and is associated with hyperactivity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). While 5-HT DRN neurons are generally thought to enhance social behavior, recent evidence suggests that specific 5-HT pathways can be aversive. Using chemogenetic iDISCO, the nucleus accumbens (NAcc) was identified as one of 5 regions that were activated by 5-HT DRN stimulation. We then employed an array of molecular genetic tools in transgenic mice to show that 5-HT DRN inputs to NAcc dynorphin neurons drive social avoidance in male mice after CIE by activating 5-HT 2C receptors. NAcc dynorphin neurons also inhibit dopamine release during social interaction, reducing the motivational drive to engage with social partners. This study reveals that excessive serotonergic drive after chronic alcohol can promote social aversion by inhibiting accumbal dopamine release. Drugs that boost brain serotonin levels may be contraindicated for individuals with AUD.

7.
Res Sq ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461716

RESUMO

Social interaction is a core component of motivational behavior that is perturbed across multiple neuropsychiatric disorders, including alcohol use disorder (AUD). Positive social bonds are neuroprotective and enhance recovery from stress, so reduced social interaction in AUD may delay recovery and lead to alcohol relapse. We report that chronic intermittent ethanol (CIE) induces social avoidance in a sex-dependent manner and is associated with hyperactivity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). While 5-HTDRN neurons are generally thought to enhance social behavior, recent evidence suggests that specific 5-HT pathways can be aversive. Using chemogenetic iDISCO, the nucleus accumbens (NAcc) was identified as one of 5 regions that were activated by 5-HT DRN stimulation. We then employed an array of molecular genetic tools in transgenic mice to show that 5-HT DRN inputs to NAcc dynorphin neurons drive social avoidance in male mice after CIE by activating 5-HT2C receptors. NAcc dynorphin neurons also inhibit dopamine release during social interaction, reducing the motivational drive to engage with social partners. This study reveals that excessive serotonergic drive after chronic alcohol can promote social aversion by inhibiting accumbal dopamine release. Drugs that boost brain serotonin levels may be contraindicated for individuals with AUD.

8.
Acta Neuropathol Commun ; 11(1): 57, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009893

RESUMO

Alzheimer's disease (AD) poses an ever-increasing public health concern as the population ages, affecting more than 6 million Americans. AD patients present with mood and sleep changes in the prodromal stages that may be partly driven by loss of monoaminergic neurons in the brainstem, but a causal relationship has not been firmly established. This is due in part to a dearth of animal models that recapitulate early AD neuropathology and symptoms. The goal of the present study was to evaluate depressive and anxiety-like behaviors in a mouse model of AD that overexpresses human wild-type tau (htau) prior to the onset of cognitive impairments and assess these behavior changes in relationship to tau pathology, neuroinflammation, and monoaminergic dysregulation in the dorsal raphe nucleus (DRN) and locus coeruleus (LC). We observed depressive-like behaviors at 4 months in both sexes and hyperlocomotion in male htau mice. Deficits in social interaction persisted at 6 months and were accompanied by an increase in anxiety-like behavior in males. The behavioral changes at 4 months coincided with a lower density of serotonergic (5-HT) neurons, downregulation of 5-HT markers, reduced excitability of 5-HT neurons, and hyperphosphorylated tau in the DRN. Inflammatory markers were also upregulated in the DRN along with protein kinases and transglutaminase 2, which may promote tau phosphorylation and aggregation. Loss of 5-HT innervation to the entorhinal cortex and dentate gyrus of the hippocampus was also observed and may have contributed to depressive-like behaviors. There was also reduced expression of noradrenergic markers in the LC along with elevated phospho-tau expression, but this did not translate to a functional change in neuronal excitability. In total, these results suggest that tau pathology in brainstem monoaminergic nuclei and the resulting loss of serotonergic and/or noradrenergic drive may underpin depressive- and anxiety-like behaviors in the early stages of AD.


Assuntos
Doença de Alzheimer , Feminino , Humanos , Camundongos , Masculino , Animais , Doença de Alzheimer/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Serotonina/metabolismo , Locus Cerúleo/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Norepinefrina/metabolismo , Modelos Animais de Doenças
9.
J Histochem Cytochem ; 71(2): 73-86, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36861683

RESUMO

Tau phosphorylation, aggregation, and toxicity are the main drivers of neurodegeneration in multiple tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with tau. Although aggregation and amyloid formation are often assumed to be synonymous, the ability of tau aggregates in different diseases to form amyloids in vivo has not been systematically studied. We used the amyloid dye Thioflavin S to look at tau aggregates in mixed tauopathies such as AD and primary age-related tauopathy, as well as pure 3R or 4R tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. We found that aggregates of tau protein only form thioflavin-positive amyloids in mixed (3R/4R), but not pure (3R or 4R), tauopathies. Interestingly, neither astrocytic nor neuronal tau pathology was thioflavin-positive in pure tauopathies. As most current positron emission tomography tracers are based on thioflavin derivatives, this suggests that they may be more useful for differential diagnosis than the identification of a general tauopathy. Our findings also suggest that thioflavin staining may have utility as an alternative to traditional antibody staining for distinguishing between tau aggregates in patients with multiple pathologies and that the mechanisms for tau toxicity may differ between different tauopathies.


Assuntos
Doença de Alzheimer , Doença de Pick , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Encéfalo/patologia , Neurônios/metabolismo , Doença de Pick/metabolismo , Doença de Pick/patologia , Paralisia Supranuclear Progressiva/patologia , Tauopatias/diagnóstico , Tauopatias/patologia
10.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36898832

RESUMO

Despite exhibiting tau phosphorylation similar to Alzheimer's disease (AD), the human fetal brain is remarkably resilient to tau aggregation and toxicity. To identify potential mechanisms for this resilience, we used co-immunoprecipitation (co-IP) with mass spectrometry to characterize the tau interactome in human fetal, adult, and Alzheimer's disease brains. We found significant differences between the tau interactome in fetal and AD brain tissue, with little difference between adult and AD, although these findings are limited by the low throughput and small sample size of these experiments. Differentially interacting proteins were enriched for 14-3-3 domains, and we found that the 14-3-3-ß, η, and γ isoforms interacted with phosphorylated tau in Alzheimer's disease but not the fetal brain. Since long isoform (4R) tau is only seen in the adult brain and this is one of the major differences between fetal and AD tau, we tested the ability of our strongest hit (14-3-3-ß) to interact with 3R and 4R tau using co-immunoprecipitation, mass photometry, and nuclear magnetic resonance (NMR). We found that 14-3-3-ß interacts preferentially with phosphorylated 4R tau, forming a complex consisting of two 14-3-3-ß molecules to one tau. By NMR, we mapped 14-3-3 binding regions on tau that span the second microtubule binding repeat, which is unique to 4R tau. Our findings suggest that there are isoform-driven differences between the phospho-tau interactome in fetal and Alzheimer's disease brain, including differences in interaction with the critical 14-3-3 family of protein chaperones, which may explain, in part, the resilience of fetal brain to tau toxicity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Proteínas 14-3-3/metabolismo , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo
11.
J Am Heart Assoc ; 12(4): e026479, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36789866

RESUMO

Background The primary objective was to develop a porcine model of prolonged (30 or 60 minutes) pediatric cardiopulmonary resuscitation (CPR) followed by 22- to 24-hour survival with extracorporeal life support, and secondarily to evaluate differences in neurologic injury. Methods and Results Ten-kilogram, 4-week-old female piglets were used. First, model development established the technique (n=8). Then, a pilot study was conducted (n=15). After 80% survival was achieved in the final 5 pilot animals, a proof-of-concept randomized study was completed (n=11). Shams (n=6) underwent anesthesia only. Severe neurological injury was determined by a composite score of mitochondrial function, neuropathology, and cerebral metabolism: scale of 0-6 (severe: >3). Among 15 piglets in the pilot study, overall survival was 10 (67%); of the final 5, overall survival was 4 (80%). Eleven piglets were then randomized to 60 (CPR60, n=5) or 30 minutes of CPR (CPR30, n=5); 1 animal was excluded from prerandomization for intra-abdominal hemorrhage (10/11, 91% survival). Three of 5 animals in the CPR60 group had severe neurological injury scores versus 1 of 5 in the CPR30 group (P=0.52). During ECMO, CPR60 animals had lower pH (CPR60: 7.4 [IQR 7.4-7.4] versus CPR30: 7.5 [IQR 7.4-7.5], P=0.022), higher lactate (CPR60: 6.8 [IQR 6.8-11] versus CPR30: 4.2 [IQR 4.1-4.3] mmol/L; P=0.012), and higher ICP (CPR60: 19.3 [IQR 11.7-29.3] versus CPR30: 7.9 [IQR 6.7-9.3] mm Hg; P=0.037). Both groups had greater mitochondrial injury than shams (CPR60: P<0.001; CPR30: P<0.001). CPR60 did not differ from CPR30 in mitochondrial respiration, neuropathology, or cerebral metabolism. Conclusions A pediatric porcine model of extracorporeal cardiopulmonary resuscitation after 60 and 30 minutes of CPR consistently resulted in 24-hour survival with more severe lactic acidosis in the 60-minute cohort.


Assuntos
Lesões Encefálicas , Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Feminino , Reanimação Cardiopulmonar/métodos , Parada Cardíaca/terapia , Mitocôndrias , Projetos Piloto , Suínos , Modelos Animais de Doenças
12.
J Neurosci ; 43(2): 221-239, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36442999

RESUMO

Lesion localization is the basis for understanding neurologic disease, which is predicated on neuroanatomical knowledge carefully cataloged from histology and imaging atlases. However, it is often difficult to correlate clinical images of brainstem injury obtained by MRI scans with the details of human brainstem neuroanatomy represented in atlases, which are mostly based on cytoarchitecture using Nissl stain or a single histochemical stain, and usually do not include the cerebellum. Here, we report a high-resolution (200 µm) 7T MRI of a cadaveric male human brainstem and cerebellum paired with detailed, coregistered histology (at 2 µm single-cell resolution) of the immunohistochemically stained cholinergic, serotonergic, and catecholaminergic (dopaminergic, noradrenergic, and adrenergic) neurons, in relationship to each other and to the cerebellum. These immunohistochemical findings provide novel insights into the spatial relationships of brainstem cell types and nuclei, including subpopulations of melanin and TH+ neurons, and allows for more informed structural annotation of cell groups. Moreover, the coregistered MRI-paired histology helps validate imaging findings. This is useful for interpreting both scans and histology, and to understand the cell types affected by lesions. Our detailed chemoarchitecture and cytoarchitecture with corresponding high-resolution MRI builds on previous atlases of the human brainstem and cerebellum, and makes precise identification of brainstem and cerebellar cell groups involved in clinical lesions accessible for both laboratory scientists and clinicians alike.SIGNIFICANCE STATEMENT Clinicians and neuroscientists frequently use cross-sectional anatomy of the human brainstem from MRI scans for both clinical and laboratory investigations, but they must rely on brain atlases to neuroanatomical structures. Such atlases generally lack both detail of brainstem chemical cell types, and the cerebellum, which provides an important spatial reference. Our current atlas maps the distribution of key brainstem cell types (cholinergic, serotonergic, and catecholaminergic neurons) in relationship to each other and the cerebellum, and pairs this histology with 7T MR images from the identical brain. This atlas allows correlation of the chemoarchitecture with corresponding MRI, and makes the identification of cell groups that are often discussed, but rarely identifiable on MRI scan, accessible to clinicians and clinical researchers.


Assuntos
Cerebelo , Imageamento por Ressonância Magnética , Humanos , Masculino , Tronco Encefálico/diagnóstico por imagem , Encéfalo/metabolismo , Neurônios
13.
Mol Cell Biochem ; 478(6): 1231-1244, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36282352

RESUMO

Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of ß-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.


Assuntos
Pró-Fármacos , Ratos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Ácido Succínico/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Complexo I de Transporte de Elétrons/metabolismo , Fluoracetatos/farmacologia , Fluoracetatos/metabolismo
14.
Acta Neuropathol ; 145(1): 71-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271929

RESUMO

High-grade astrocytoma with piloid features (HGAP) is a recently recognized glioma type whose classification is dependent on its global epigenetic signature. HGAP is characterized by alterations in the mitogen-activated protein kinase (MAPK) pathway, often co-occurring with CDKN2A/B homozygous deletion and/or ATRX mutation. Experience with HGAP is limited and to better understand this tumor type, we evaluated an expanded cohort of patients (n = 144) with these tumors, as defined by DNA methylation array testing, with a subset additionally evaluated by next-generation sequencing (NGS). Among evaluable cases, we confirmed the high prevalence CDKN2A/B homozygous deletion, and/or ATRX mutations/loss in this tumor type, along with a subset showing NF1 alterations. Five of 93 (5.4%) cases sequenced harbored TP53 mutations and RNA fusion analysis identified a single tumor containing an NTRK2 gene fusion, neither of which have been previously reported in HGAP. Clustering analysis revealed the presence of three distinct HGAP subtypes (or groups = g) based on whole-genome DNA methylation patterns, which we provisionally designated as gNF1 (n = 18), g1 (n = 72), and g2 (n = 54) (median ages 43.5 years, 47 years, and 32 years, respectively). Subtype gNF1 is notable for enrichment with patients with Neurofibromatosis Type 1 (33.3%, p = 0.0008), confinement to the posterior fossa, hypermethylation in the NF1 enhancer region, a trend towards decreased progression-free survival (p = 0.0579), RNA processing pathway dysregulation, and elevated non-neoplastic glia and neuron cell content (p < 0.0001 and p < 0.0001, respectively). Overall, our expanded cohort broadens the genetic, epigenetic, and clinical phenotype of HGAP and provides evidence for distinct epigenetic subtypes in this tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Astrocitoma/genética , Astrocitoma/patologia , Mutação/genética , Metilação de DNA/genética
15.
Psychiatry Clin Neurosci ; 77(1): 48-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36266784

RESUMO

AIMS: There is no previous study demonstrating the differences of genome-wide DNA methylation (DNAm) profiles between patients with and without postoperative delirium (POD). We aimed to discover epigenetic (DNAm) markers that are associated with POD in blood obtained from patients before and after neurosurgery. METHODS: Pre- and post-surgical blood DNA samples from 37 patients, including 10 POD cases, were analyzed using the Illumina EPIC array genome-wide platform. We examined DNAm differences in blood from patients with and without POD. Enrichment analysis with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes terms were also conducted. RESULTS: When POD cases were tested for DNAm change before and after surgery, enrichment analyses showed many relevant signals with statistical significance in immune response related-pathways and inflammatory cytokine related-pathways such as "cellular response to cytokine stimulus", "regulation of immune system process", "regulation of cell activation", and "regulation of cytokine production". Furthermore, after excluding the potential effect of common factors related to surgery and anesthesia between POD cases and non-POD controls, the enrichment analyses showed significant signals such as "immune response" and "T cell activation", which are same pathways previously identified from an independent non-surgical inpatient cohort. CONCLUSIONS: Our first genome-wide DNAm investigation of POD showed promising signals related to immune response, inflammatory response and other relevant signals considered to be associated with delirium pathophysiology. Our data supports the hypothesis that epigenetics play an important role in the pathophysiological mechanism of delirium and suggest the potential usefulness of an epigenetics-based biomarker of POD.


Assuntos
Delírio do Despertar , Neurocirurgia , Humanos , Metilação de DNA , Epigênese Genética , Biomarcadores
17.
J Psychiatr Res ; 156: 245-251, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270064

RESUMO

OBJECTIVE: No previous study demonstrates the difference in the genome-wide DNA methylation status of post-operative delirium (POD) using human brain tissue obtained from neurosurgery and multiple peripheral tissues such as blood, saliva, and buccal samples from the same individuals. We aimed to identify epigenetic marks of DNA methylation in the brain and peripheral tissues to elucidate the potential pathophysiological mechanism of POD. METHODS: The four tissue types (brain, blood, saliva, buccal) of DNA samples from up to 40 patients, including 11 POD cases, were analyzed using Illumina EPIC array. DNAm differences between patients with and without POD were examined. We also conducted enrichment analysis based on the top DNAm signals. RESULTS: The most different CpG site between control and POD was found at cg16526133 near the ADAMTS9 gene from the brain tissue(p = 8.66E-08). However, there are no CpG sites to reach the genome-wide significant level. The enrichment analysis based on the 1000 top hit CpG site (p < 0.05) on the four tissues showed several intriguing pathways. In the brain, there are pathways including "positive regulation of glial cell differentiation". Blood samples showed also pathways related to immune function. Besides, both saliva and the buccal sample showed pathways related to circadian rhythm, although these findings were not FDR significant. CONCLUSION: Enrichment analysis found several intriguing pathways related to potential delirium pathophysiology. Present data may further support the role of epigenetics, especially DNA methylation, in the molecular mechanisms of delirium pathogenesis.


Assuntos
Delírio do Despertar , Humanos , Metilação de DNA , Epigenômica , Encéfalo
18.
Clin Transl Med ; 12(7): e954, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35872650

RESUMO

BACKGROUND: Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood. METHODS: We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4. HEK293 cells, human iPS cells-derived cardiomyocytes and neurons were used to determine the mechanistic role of mitochondrial complex I deficiency. RESULTS: LS mice develop severe cardiac bradyarrhythmia and diastolic dysfunction. Human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) with Ndufs4 deletion recapitulate LS cardiomyopathy. Mechanistically, we demonstrate a direct link between complex I deficiency, decreased intracellular (nicotinamide adenine dinucleotide) NAD+ /NADH and bradyarrhythmia, mediated by hyperacetylation of the cardiac sodium channel NaV 1.5, particularly at K1479 site. Neuronal apoptosis in the cerebellar and midbrain regions in LS mice was associated with hyperacetylation of p53 and activation of microglia. Targeted metabolomics revealed increases in several amino acids and citric acid cycle intermediates, likely due to impairment of NAD+ -dependent dehydrogenases, and a substantial decrease in reduced Glutathione (GSH). Metabolic rescue by nicotinamide riboside (NR) supplementation increased intracellular NAD+ / NADH, restored metabolic derangement, reversed protein hyperacetylation through NAD+ -dependent Sirtuin deacetylase, and ameliorated cardiomyopathic phenotypes, concomitant with improvement of NaV 1.5 current and SERCA2a function measured by Ca2+ -transients. NR also attenuated neuronal apoptosis and microglial activation in the LS brain and human iPS-derived neurons with Ndufs4 deletion. CONCLUSIONS: Our study reveals direct mechanistic explanations of the observed cardiac bradyarrhythmia, diastolic dysfunction and neuronal apoptosis in mouse and human induced pluripotent stem cells (iPSC) models of LS.


Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Doença de Leigh , Animais , Bradicardia/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Doença de Leigh/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais , NAD/metabolismo
19.
Brain ; 145(7): 2555-2568, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35788639

RESUMO

The underlying mechanisms by which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to acute and long-term neurological manifestations remains obscure. We aimed to characterize the neuropathological changes in patients with coronavirus disease 2019 and determine the underlying pathophysiological mechanisms. In this autopsy study of the brain, we characterized the vascular pathology, the neuroinflammatory changes and cellular and humoral immune responses by immunohistochemistry. All patients died during the first wave of the pandemic from March to July 2020. All patients were adults who died after a short duration of the infection, some had died suddenly with minimal respiratory involvement. Infection with SARS-CoV-2 was confirmed on ante-mortem or post-mortem testing. Descriptive analysis of the pathological changes and quantitative analyses of the infiltrates and vascular changes were performed. All patients had multifocal vascular damage as determined by leakage of serum proteins into the brain parenchyma. This was accompanied by widespread endothelial cell activation. Platelet aggregates and microthrombi were found adherent to the endothelial cells along vascular lumina. Immune complexes with activation of the classical complement pathway were found on the endothelial cells and platelets. Perivascular infiltrates consisted of predominantly macrophages and some CD8+ T cells. Only rare CD4+ T cells and CD20+ B cells were present. Astrogliosis was also prominent in the perivascular regions. Microglial nodules were predominant in the hindbrain, which were associated with focal neuronal loss and neuronophagia. Antibody-mediated cytotoxicity directed against the endothelial cells is the most likely initiating event that leads to vascular leakage, platelet aggregation, neuroinflammation and neuronal injury. Therapeutic modalities directed against immune complexes should be considered.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Adulto , Complexo Antígeno-Anticorpo , Ativação do Complemento , Células Endoteliais , Humanos , Inflamação , SARS-CoV-2
20.
Cell ; 185(14): 2452-2468.e16, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768006

RESUMO

COVID survivors frequently experience lingering neurological symptoms that resemble cancer-therapy-related cognitive impairment, a syndrome for which white matter microglial reactivity and consequent neural dysregulation is central. Here, we explored the neurobiological effects of respiratory SARS-CoV-2 infection and found white-matter-selective microglial reactivity in mice and humans. Following mild respiratory COVID in mice, persistently impaired hippocampal neurogenesis, decreased oligodendrocytes, and myelin loss were evident together with elevated CSF cytokines/chemokines including CCL11. Systemic CCL11 administration specifically caused hippocampal microglial reactivity and impaired neurogenesis. Concordantly, humans with lasting cognitive symptoms post-COVID exhibit elevated CCL11 levels. Compared with SARS-CoV-2, mild respiratory influenza in mice caused similar patterns of white-matter-selective microglial reactivity, oligodendrocyte loss, impaired neurogenesis, and elevated CCL11 at early time points, but after influenza, only elevated CCL11 and hippocampal pathology persisted. These findings illustrate similar neuropathophysiology after cancer therapy and respiratory SARS-CoV-2 infection which may contribute to cognitive impairment following even mild COVID.


Assuntos
COVID-19 , Influenza Humana , Neoplasias , Animais , Humanos , Influenza Humana/patologia , Camundongos , Microglia/patologia , Bainha de Mielina , Neoplasias/patologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA